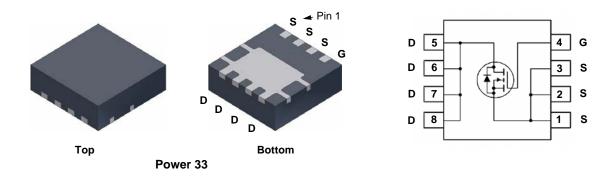


N-Channel Power Trench[®] MOSFET 40V, 20A, 5.8m Ω

Features

- Max $r_{DS(on)} = 5.8 m\Omega$ at $V_{GS} = 10V$, $I_D = 13.5A$
- Max $r_{DS(on)} = 8.0 \text{m}\Omega$ at $V_{GS} = 4.5 \text{V}$, $I_D = 11.8 \text{A}$
- Low Profile 1mm max in Power 33
- 100% UIL Tested
- RoHS Compliant



General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Application

DC - DC Conversion

MOSFET Maximum Ratings $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			40	V	
V _{GS}	Gate to Source Voltage			±20	V	
ID	Drain Current -Continuous (Package limited)	T _C = 25°C		20		
	-Continuous (Silicon limited)	T _C = 25°C		64	٨	
	-Continuous	T _A = 25°C	(Note 1a)	14	A	
	-Pulsed			50		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	216	mJ	
P _D	Power Dissipation	$T_{C} = 25^{\circ}C$		41	14/	
	Power Dissipation $T_A = 25^{\circ}C$ (Note 1a)		(Note 1a)	2.0	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Ra	ange		-55 to +150	°C	

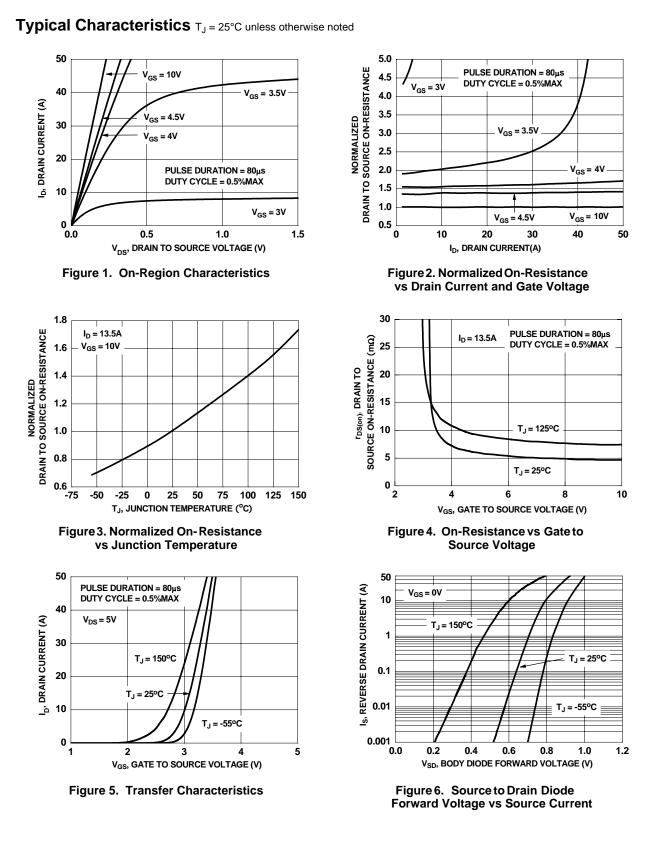
Thermal Characteristics

R_{\thetaJC}	Thermal Resistance, Junction to Case	3	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1a	53	C/vv

Package Marking and Ordering Information

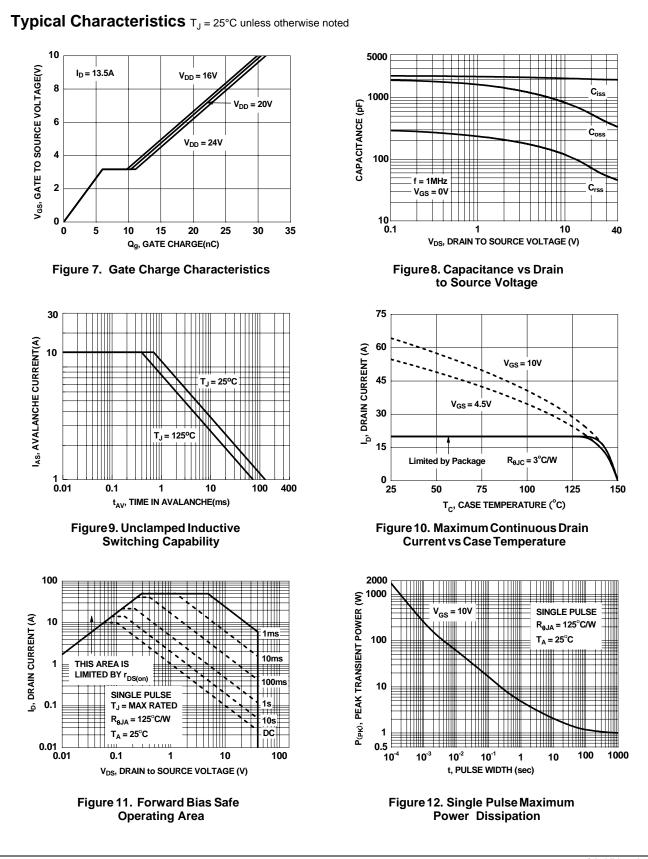
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC8462	FDMC8462	Power 33	13"	12mm	3000 units

March 2008


FDMC8462
N-Channel
Power
Trench®
MOSFET

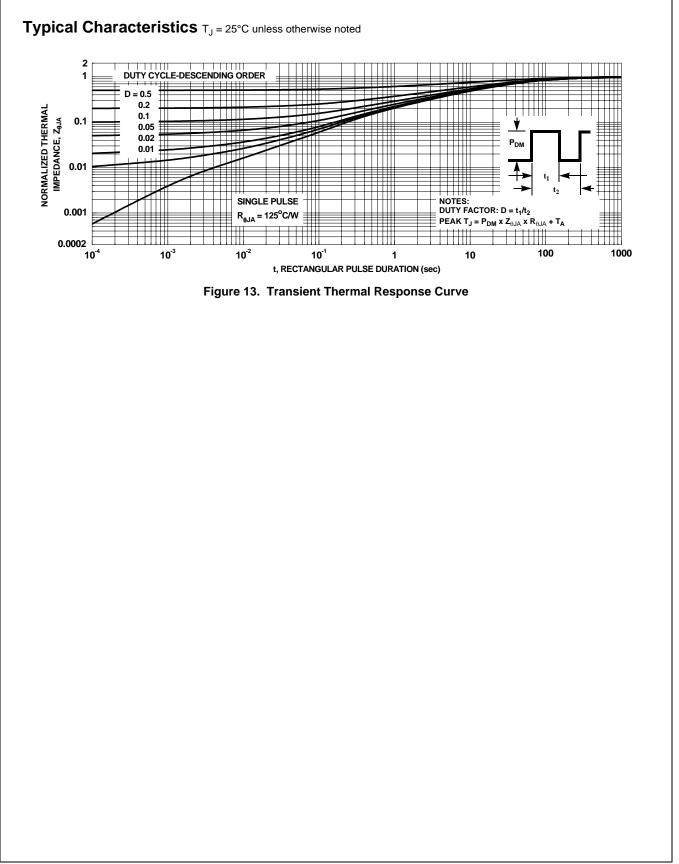
-

	Test Conditions	Min	Тур	Max	Units
teristics					
Drain to Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$	40			V
Breakdown Voltage Temperature Coefficient	$I_D = 250\mu$ A, referenced to 25°C	-	31		mV/°
Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 32V,$			1	μA
				±100	nA
	00 00				
	$V_{22} = V_{22}$ $I_2 = 250 \mu A$	1.0	2.0	3.0	V
		1.0	2.0	0.0	v
Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		-6.6		mV/°
	V _{GS} = 10V, I _D = 13.5A		4.7	5.8	
Static Drain to Source On Resistance	V _{GS} = 4.5V, I _D = 11.8A		6.4	8.0	mΩ
	V _{GS} = 10V, I _D = 13.5A, T _J = 125°C		7.1	9.3	
Forward Transconductance	$V_{DD} = 5V, I_D = 13.5A$		60		S
Characteristics					
Input Capacitance			2000	2660	pF
Output Capacitance			545	725	pF
Reverse Transfer Capacitance			80	120	pF
Gate Resistance	f = 1MHz		2.7		Ω
Rise Time	$V_{DD} = 20V, I_D = 13.5A,$		4	10	ns
Turn-Off Delay Time	V_{GS} = 10V, R_{GEN} = 6 Ω		27	43	ns
Fall Time			3	10	ns
			v	10	
Total Gate Charge	$V_{GS} = 0V$ to 10V		30	43	nC
Total Gate Charge	$V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V$,			-	
Total Gate Charge Gate to Source Charge			30	43	nC
Total Gate Charge	$V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V$,		30 15	43	nC nC nC nC
Total Gate Charge Gate to Source Charge	$V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V$,		30 15 6	43	nC nC
Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge rce Diode Characteristics	$V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V,$ $I_D = 13.5A$ $V_{GS} = 0V, I_S = 13.5A$ (Note 2)		30 15 6	43	nC nC nC
Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V,$ $I_D = 13.5A$		30 15 6 5	43 21	nC nC
Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge rce Diode Characteristics	$V_{GS} = 0V \text{ to } 4.5V$ $V_{DD} = 20V,$ $I_D = 13.5A$ $V_{GS} = 0V, I_S = 13.5A$ (Note 2)		30 15 6 5 0.8	43 21 1.3	nC nC nC
	Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	CoolinitientVGS = 0V, VDS = 32V,Zero Gate Voltage Drain Current $V_{GS} = 0V, V_{DS} = 32V,$ Gate to Source Leakage Current $V_{GS} = \pm 20V, V_{DS} = 0V$ teristicsGate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = 250\mu A$ Gate to Source Threshold Voltage $I_D = 250\mu A$, referenced to $25^{\circ}C$ Temperature Coefficient $V_{GS} = 10V, I_D = 13.5A$ Static Drain to Source On Resistance $V_{GS} = 10V, I_D = 13.5A$ Forward Transconductance $V_{DD} = 5V, I_D = 13.5A$ Characteristics $V_{DS} = 20V, V_{GS} = 0V,$ Input Capacitance $V_{DS} = 20V, V_{GS} = 0V,$ Gate Resistance $f = 1MHz$ Characteristics $f = 1MHz$ Turn-On Delay Time $V_{DD} = 20V, I_D = 13.5A,$	ControlVGS = 0V, VDS = 32V, VGS = 420V, VDS = 0VGate to Source Leakage Current $V_{GS} = \pm 20V, V_{DS} = 0V$ teristicsGate to Source Threshold Voltage Temperature Coefficient $V_{GS} = V_{DS}, I_D = 250\muA$ 1.0Gate to Source Threshold Voltage Temperature Coefficient $I_D = 250\muA$, referenced to $25^{\circ}C$ 1.0Static Drain to Source On Resistance $V_{GS} = 10V, I_D = 13.5A$ VVor Caracteristics $V_{GS} = 10V, I_D = 13.5A$ 1.0Characteristics $V_{DD} = 5V, I_D = 13.5A$ 1.0Input Capacitance Gate Resistance $V_{DS} = 20V, V_{GS} = 0V, f = 10Hz$ 1.0Characteristics $f = 1MHz$ 1.0Turn-On Delay Time Rise Time $V_{DD} = 20V, I_D = 13.5A, f = 10Hz$ 1.0	ConstructionVGS = 0V, VDS = 32V, Gate to Source Leakage CurrentVGS = $\pm 20V, V_{DS} = 0V$ teristicsGate to Source Threshold VoltageVGS = $V_{DS}, I_D = 250\muA$ 1.02.0Gate to Source Threshold VoltageID = $250\muA$, referenced to $25^{\circ}C$ -6.6Temperature CoefficientVGS = $10V, I_D = 13.5A$ 4.7VGS = $10V, I_D = 13.5A$ 4.7VGS = $10V, I_D = 13.5A$ 6.4VGS = $10V, I_D = 13.5A, T_J = 125^{\circ}C$ 7.1Forward TransconductanceVDD = $5V, I_D = 13.5A$ 60CharacteristicsInput CapacitanceVDS = $20V, V_{GS} = 0V, f_D = 13.5A$ 80Gate Resistancef = $1MHz$ 2.7CharacteristicsTurn-On Delay TimeVDD = $20V, I_D = 13.5A, J_T = 125^{\circ}C$ Turn-On Delay Time12Rise TimeVDD = $20V, I_D = 13.5A, J_T = 125^{\circ}C$	Consistent V _{GS} = 0V, V _{DS} = 32V, 1 Zero Gate Voltage Drain Current $V_{GS} = 0V, V_{DS} = 32V,$ 1 Gate to Source Leakage Current $V_{GS} = \pm 20V, V_{DS} = 0V$ ± 100 teristics Gate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = 250\mu A$ 1.0 2.0 3.0 Gate to Source Threshold Voltage $I_D = 250\mu A$, referenced to 25° C -6.6 -6.6 Temperature Coefficient $I_D = 250\mu A$, referenced to 25° C -6.6 -6.6 Static Drain to Source On Resistance $V_{GS} = 10V, I_D = 13.5A$ 4.7 5.8 V_{GS} = 10V, I_D = 13.5A, T_J = 125^{\circ}C 7.1 9.3


3. Starting $T_J = 25^{\circ}$ C; N-ch: L = 3 mH, I_{AS} = 12A, V_{DD} = 40V, V_{GS} = 10V

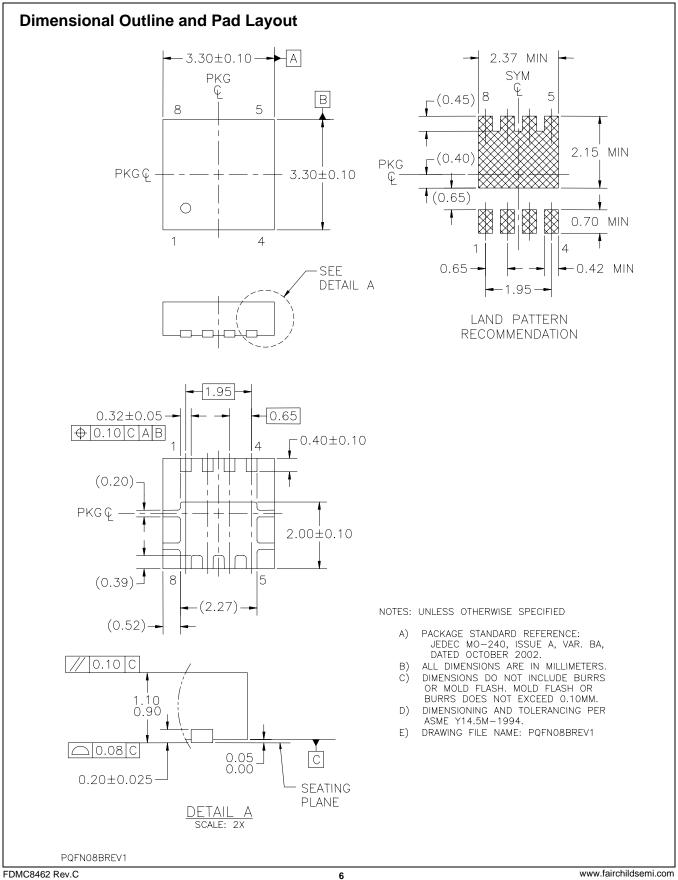
www.fairchildsemi.com

FDMC8462 Rev.C


www.fairchildsemi.com

FDMC8462 Rev.C

4


www.fairchildsemi.com

FDMC8462 Rev.C

www.fairchildsemi.com

FDMC8462 N-Channel Power Trench[®] MOSFET

FDMC8462 N-Channel Power Trench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now™	FPS™ F-PFS™	PDP-SPM™ Power-SPM™	The Power Franchise [®] power franchise
CorePLUS™	FRFET®	PowerTrench [®]	franchise
CorePOWER™	Global Power Resource ^{s™}	Programmable Active Droop™	TinyBoost™
CROSSVOLT™	Green FPS™	QFET®	TinyBuck™
CTL™	Green FPS™ e-Series™	QS™	TinyLogic [®]
Current Transfer Logic™	GTO™	Quiet Series™	TINYOPTO™
EcoSPARK [®]	IntelliMAX™	RapidConfigure™	TinyPower™
EfficentMax™	ISOPLANAR™	Saving our world 1mW at a time™	TinyPWM™
EZSWITCH™ *	MegaBuck™	SmartMax™	TinyWire™
EZ [™]	MICROCOUPLER™	SMART START™	µSerDes™
	MicroFET™	SPM [®]	\mathcal{U}
F	MicroPak™	STEALTH™	SerDes
Fairchild [®]	MillerDrive™	SuperFET™	UHC [®]
Fairchild Semiconductor [®]	MotionMax™	SuperSOT™-3	Ultra FRFET™
FACT Quiet Series™	Motion-SPM™	SuperSOT™-6	UniFET™
FACT [®]	OPTOLOGIC [®]	SuperSOT™-8	VCX™
FAST [®]	OPTOPLANAR [®]	SuperMOS™	VisualMax™
FastvCore™ FlashWriter [®] *	ل ®	GENERAL ®	

* EZSWITCHTM and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.